
Intel® Inspector XE
Memory and thread debugger

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

2

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

3

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4

Motivation for The Inspector XE

Memory Errors

• Invalid Accesses
• Memory Leaks
• Uninitialized Memory Accesses

Threading Errors

• Data Races
• Deadlocks
• Cross Stack References

Multi-threading problems
• Hard to reproduce,
• Difficult to debug
• Expensive to fix

Let the tool do it for you

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

5

Feature Details

Data collection • Dynamic Memory and Threading Analysis (including .NET* analysis)
• MPI applications analysis

Result analyses • GUI data mining: source code analysis, filtering, exploring call paths, etc.
• Debugger integration
• Result comparison
• Problem life cycle management
• Command line interface (especially useful for regression testing)

GUI • Microsoft* Visual Studio IDE integration (2010, 2012 and 2013)
• Stand alone GUI on both Windows* and Linux*

Compilers
supported

• Microsoft* Visual* C++ and .NET*
• Intel® C/C++ Compiler XE 12.0 or higher
• Intel® Visual Fortran Compiler XE 12.0 or higher
• gcc

OS • Windows* 7, 8, 8.1,
• Windows* Server 2008, 2008 R2, 2012
• Linux*: RedHat, Fedora, CentOS, SUSE, Debian, Ubuntu

Languages • C/C++
• C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)
• Fortran

Key Features at a glance

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
6

Workflow: setup project

Specify Application,
arguments and

working directory

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
7

1. Select Analysis
Type

2. Click Start

Workflow: select analysis and start

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

8

Workflow: manage results

7/23/2014

Code locations grouped
into Problems to simplify

results management

Powerful filtration
featureDouble click on Problem

to navigate to source

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

9

Workflow: navigate to sources

7/23/2014

Call stacks

Switch to disassembly for more details

Problematic line in source code

All code locations for a problem

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

10

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
11

Analyzed as software runs

• Data (workload) -driven execution

• Program can be single or multi-threaded

• Diagnostics reported incrementally as they occur

Includes monitoring of:

• Memory allocation and allocating functions

• Memory deallocation and deallocating functions

• Memory leak reporting

• Inconsistent memory API usage

Analysis scope

• Native code only: C, C++, Fortran

• Code path must be executed to be analyzed

• Workload size affects ability to detect a problem

Memory problem Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
12

Memory problems

Memory leak
• a block of memory is allocated
• never deallocated
• not reachable (there is no pointer available

to deallocate the block)
• Severity level = (Error)

Memory not deallocated
• a block of memory is allocated
• never deallocated
• still reachable at application exit (there is a

pointer available to deallocate the block).
• Severity level = (Warning)

Memory growth
• a block of memory is allocated
• not deallocated, within a specific time

segment during application execution.
• Severity level = (Warning)

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
13

Memory problems

Uninitialized memory access
• Read of an uninitialized memory location

Invalid Memory Access
• Read or write instruction references memory

that is logically or physically invalid

Kernel Resource Leak
• Kernel object handle is created but never

closed

GDI Resource Leak
• GDI object is created but never deleted

// Uninitialized Memory Access

void func()
{

int a;
int b = a * 4;

}

// Invalid Memory Access

char *pStr = (char*) malloc(20);
free(pStr);
strcpy(pStr, "my string");

// Kernel Resource Leak

HANDLE hThread = CreateThread(0,
8192, work0, NULL, 0, NULL);

return;

// GDI Resource Leak

HPEN pen = CreatePen(0, 0, 0);
return;

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
14

During Analysis:

Analysis Results:

Analyze Memory Growth

Set Start Point

Set End Point

Memory Growth
Problem Set

Code location for
each block of memory
that was allocated but
not de-allocated
during the time period

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
15

Analysis Results:

On-demand leak detection

Set Start Point

Set End Point

Memory Leak
shown during run
time

• Check code regions between points

'A' and 'B‘ for leaks

• Check daemon processes for leaks

• Check crashing processes for leaks

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

16

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
17

Analyzed as software runs

• Data (workload) -driven execution

• Program needs to be multi-threaded

• Diagnostics reported incrementally as they occur

Includes monitoring of:

• Thread and Sync APIs used

• Thread execution order

• Scheduler impacts results

• Memory accesses between threads

Analysis scope

• Native code: C, C++, Fortran

• Managed or mixed code: C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)

• Code path must be executed to be analyzed

• Workload size doesn’t affect ability to detect a problem

Threading problem Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
18

Data race

Write -> Write Data Race

Read -> Write Data Race

CRITICAL_SECTION cs; // Preparation
int *p = malloc(sizeof(int)); // Allocation Site
*p = 0;
InitializeCriticalSection(&cs);

*p = 1; // First Write EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Thread #1 Thread #2

int x;
x = *p; // Read

Thread #1

EnterCriticalSection(&cs);
*p = 2; // Write
LeaveCriticalSection(&cs);

Thread #2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
19

Deadlock
CRITICAL_SECTION cs1;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;
InitializeCriticalSection(&cs1); // Allocation Site (cs1)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

EnterCriticalSection(&cs1);
x++;

EnterCriticalSection(&cs2);
y++;
LeaveCriticalSection(&cs2);

LeaveCriticalSection(&cs1);

EnterCriticalSection(&cs2);
y++;

EnterCriticalSection(&cs1);
x++;
LeaveCriticalSection(&cs1);

LeaveCriticalSection(&cs2);

Thread #1 Thread #2

Lock Hierarchy Violation

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #1

3. EnterCriticalSection(&cs2); in thread #2

4. EnterCriticalSection(&cs1); in thread #2

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

20

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
21

Prior to using Inspector XE, sources should compile & link cleanly

Prepare build for analysis

Compile

• Use dynamically linked thread-safe runtime libraries

/MDd on Windows

• Generate symbolic information

/ZI on Windows

• Disable optimization

/Od on Windows

Link

• Preserve symbolic information

/DEBUG on Windows

• Specify relocatable code sections

/FIXED:NO on Windows

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
22

Search directories

Inspector XE needs to locate paths to:

• Binary files

• Symbol files

• Source files

No need for extra search directories configuration if:

• Binary, symbol and source files were not modified and moved

• Results are collected and viewed on the same machine

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
23

The Inspector XE dilates both time and memory consumed significantly!

Correctness analyses overhead

Inspector XE tracks

• Thread and Sync APIs

• Memory accesses

Inspector XE performs binary instrumentation using PIN

• Dynamic instrumentation system provided by Intel
(http://www.pintool.org)

• Injected code used for observing the behavior of the running process

• Source modification/recompilation is not needed

Increases execution time and memory consumed (potentially
significantly)

http://www.pintool.org/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
24

Scale down workload to speed up analysis!

Workload guidelines

Use small data set

• Smaller number of threads

• Minimize data set size (e.g. smaller image sizes)

• Minimize loop iterations or time steps

• Minimize update rates (e.g. lower frames per second)

Use small but representative data set

• Only actually executed code paths are analyzed

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

25

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
26

3. Choose modules you want to
include or exclude from analysis

1. There are two options:

- Include modules of interest

- Exclude unnecessary modules

2. Press Modify

Include and Exclude modules

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014

Filtering - focus on what is important

Filter – Show only one source file

Only related errors are shown

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
28

• Suppressions are saved in one or more files

• Tool suppresses all files from specified folder(s)

Suppressions: manage false errors
Suppressions are marked
or hidden entirely

Choose problem type

Choose stack frames
to match the rule

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

29

Intro to Intel® Inspector XE
Introduction

Memory problem analysis

Threading problem Analysis

Preparing setup for analysis

Managing analysis results

Advanced Features

Summary

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
30

Debugger integration

Break into debugger

• Analysis can stop when it detects a
problem

• User is put into a standard
debugging session

Windows*
• Microsoft* Visual Studio Debugger

Linux*
• gdb

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• inspxe-cl is the command line:
– Windows: C:\Program Files\Intel\Inspector XE
\bin32\inspxe-cl.exe

– Linux: /opt/intel/inspector_xe/bin64/inspxe-cl

• Help:
inspxe-cl –help

• Set up command line with GUI

7/23/2014
31

Command Line Interface

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
32

Data collection from script

• Command line interface (CLI)
for running analysis

• Child process analysis

Reporting CLI

• Exporting results (pack and send)

• Text reports: XML, CSV and plain text

• Detect new problems automatically

Automated regression testing

Create a baseline

Check for
regressions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7/23/2014
33

• Compile the inspector_example.c code with the MPI scripts

• Use the command-line tool under the MPI run scripts to gather
report data

mpirun -n 4 inspxe-cl –-result-dir insp_results

-collect mi1 -- ./insp_example.exe

• Output is: a results directory for each MPI rank in the job

ls | grep inspector_results on Linux

• Launch the GUI and view the results for each particular rank

inspxe-gui inspector_results.<rank#> on Linux

Using the Intel® Inspector XE with MPI

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

34

Intel Inspector XE: Summary

Advanced correctness checking

• Find issues that traditional testing misses

• Dynamic memory and threading error detection

Automated regression

• Command line interface

• Suitable for scripting

Wide analysis capabilities

• GUI data management

• Debugger integration

Ship high quality software products!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

35

